\qquad

C.U.SHAH UNIVERSITY

Summer-2015

Subject Code: 4SCO4mTC2
Course Name: B.Sc.
Semester: IV

Subject Name: Linear Algebra-II
Date: 21/5/2015
Marks: 70
Time: 10:30 TO 01:30

Instructions:

1) Attempt all Questions in same answer book/Supplementary.
2) Use of Programmable calculator \& any other electronic instrument prohibited.
3) Instructions written on main answer book are strictly to be obeyed.
4) Draw neat diagrams \& figures (if necessary) at right places.
5) Assume suitable \& perfect data if needed.

SECTION - I

Q-1 (A) What is angle between $u=e_{1}$ and $v=e_{1}+e_{2}$ in R^{2}.
(B) Find $\cos \theta$ where θ is angle between $f(t)=t$ and $g(t)=t^{2}$ in $\mathrm{C}[0,1]$ further $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$.
(C) Define orthogonal linear transformation.
(D) If W is subspace of vector space V .then show that $W^{\perp} \cap W=\{0\}$.

Q-2 (A) State and prove Riesz-representation theorem.
(B) Apply Gram-schmidth process to obtain orthonormal set
$\{(1,1,1,1),(0,2,0,2),(-1,1,3,-1)\}$ in R^{4}.

OR

Q-2 (A) Using gram-schmidth process obtain orthonaormal set for $\left\{1, t, t^{2}\right\}$ of with inner product $\langle p, q\rangle=\int_{0}^{1} p(t) q(t) d t$.
(B) If W is subspace of inner product space V then show that $\mathrm{V}=\mathrm{W} \oplus W^{\perp}$.

Q-3 (A) Show any subspace W of R^{n} is the set of solution of homogenous system of linear equations.
(B) Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be linear then the following are equivalent.
(1) T is orthogonal.
(2) $\|T x\|=\|x\|$, for all $\mathrm{x} \in V$.
(3) T takes an orthonarmal basis to orthonormal basis.

Q-3 (A) If is any map such that
(1) $f(0)=0$
(2) $\|f(x)-f(y)\|=\|x-y\|$,
then show that f is an orthogonal map.
(B) With usual notation and figure show that
$R_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ and $\rho_{\theta}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right)$.
Section-II
Q-4 (A) For what values of $r, \operatorname{det}(\alpha A)=\alpha^{r} \operatorname{det} \mathrm{~A}$.
(B) $\operatorname{det}(\mathrm{A}+B)=\operatorname{det} \mathrm{A}+\operatorname{det} \mathrm{B}$. Is this statement true or false? Justify your answer.
(C) Define eigen -value and eigen vector.
(D) All characteristic roots of symmetric matrix are real. Is this statement true or false?

Q-5 (A) Show that parallelogram is rhombus if and only if the diagonals are perpendicular to each other.
(B) Show that medians of a triangle are con current.
(C) Show that the angle inscribed by semicircle is a right angle.

OR

Q-5 (A) For a linear system $\mathrm{Ax}=\mathrm{b}$ in usual notation show that $x_{1}=\frac{\operatorname{det}\left(b, A_{2}, A_{3}\right)}{\operatorname{det} \mathrm{A}}$.
(B) Solve by Cramer's rule

$$
\begin{align*}
& x+y=0 \tag{05}\\
& y+z=1 \\
& z+x=-1
\end{align*}
$$

(C) If $\mathrm{A}=\left[\begin{array}{ccc}6 & 2 & 8 \\ -3 & 4 & 1 \\ 4 & -4 & 5\end{array}\right]$, then compute $\operatorname{det} \mathrm{A}$ using column vectors and inner product.

Q-6 (A) If $\mathrm{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right)$ then show that $x \times y=\left(\begin{array}{c}x_{2} y_{3}-x_{3} y_{2} \\ x_{3} y_{1}-x_{1} y_{3} \\ x_{1} y_{2}-x_{2} y_{1}\end{array}\right)$.
(B) Find the eigen values and eigen vectors of $\left(\begin{array}{lll}0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 3\end{array}\right)$

Q-6 (A) State and Prove Caley-Hamilton theorem.
(B) Reduce the equation $2 x^{2}-72 x y+23 y^{2}+140 x-20 y+50=0$ in to standard form.

